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ON THE TRANSVERSE TWISTING OF SHALLOW
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La Jolla, California 92093

ABSTRACT
The problem of transverse twisting of a shallow spherical
shell with a small circular hole is solved, in generalization

of the corresponding problem of a flat plate. The solution is

of interest as a closed-form solution of an unsymmetrical stress
concentration problem, with quantitative features depending on

its boundary layer behavior for large values of a relevant

parameter. The problem is also of interest as an example of

applicability of a previously proposed asymptotic procedure where

interior contributions and edge-zone contributions are determined

in sequence rather than siﬁultane0us1y.
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On the Transverse Twisting of Shallow Spherical Ring Caps*
by
E. Reissner
Department of Applied Mechanics and Engineering Sciences

University of California, San Diego
La Jolla, California 92093

Introduction. The original aim of this note was to formulate

a nonrotationally-symmetric stress concentration problem for thin
shells which could be solved in closed form, and to obtain the solution
of this problem. It appeared in the course of the analysis that this
stress concentration problem was also a particularly fitting example
for the application of an asymptotic solution method for unsymmetric
shell problems, involving the concepts of interior and edge zone solu-
tion contributions and of the concept of contracted boundary conditions
for the separate determination of these contributions, which had been
proposed sometime earlier [4].

The problem is as follows. We consider an isotropic shallow spherical
shell with the edées defined by two pairs of mutually perpendicular planes
perpendicular to a base plane, with the corners of the fectangle in the
base plane which is determined by the two pairs of mutually perpendicular
planes coinciding with the corners of the shell boundary curve. Given
this configuration, we assume that the edges of the shell are free of
stress, except for the action of equal and opposite concentrated corner
forces, as indicated in Figure 1. Our object is the state of stress in
the shell, without or with a small concentric circular hole at the apex.

It is evident that a limiting case of the above problem is the

corresponding problem of a flat plate, with the solution of the problem

+Supported by the Office of Naval Research.
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without the circular hole being a special case of the problem of

St. Venant torsion of narrow rectangular cross section beams, and with
the solution of the circular-hole problem being included in solutions
by Goodier for a class of transverse plate flexure-problems [2).

In the present analysis the plate flexure problem appears upon .
assuming the value of a certain parameter p to be zero. At the same
time the asymptotic analysis corresponding to the procedure described
in [4) is appropriate for values of u which are large compared to unity.
In the interim region of finite values of p it is necessary to obtain
appropriate solutions of the equations of shell theory, which in this
instance may be taken from shallow-shell theqty.

Regarding the physical aspe;tp of the problem we find, as expected,
a dominance of bending stresses over membrane stresses in the interior
of the shell region. On the other hand, we also find that for suffi-
ciently large values of y we have membrane stresses in an edge zone
which are of the same order of magnitude as the bending stresses in this
zone, in such a way that the value of the stress concentration factor
for this problem of transverse bending involves both bending and mem-
brane stresses in a sigpificant manner. :

Equations for Isotropic Homogeneous Shallow Spherical Shells.

We consider a shallow spherical shell with middle surface equation
z =H - r?/2R, where R is the radius of the shell, H the distance of the
apex from the base plane of the shell, and r and 6 are polar coordinates
in the base plane. We assume that the shell is free of distributed
surface forces and have then that tangentional stress resultants N, stress
couples M and transverse stress resultants Q are expressed as follows
in terms of a stress function K and a transverse displacement function
w, [3],
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= __'_r = 2 - - MRRTE L.t
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M = -D(Viw - (1-0)(2E+ 991, M, = -(+)DVw - M, (2)
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Use of appropriate equations of equilibrium and compatibility in
conjunction with the above, and in conjunction with stress strain relations
of the form oy * B(Ntr-vlee). etc. leads to differential equations for
K and w of the form

RBV2V2K - V2w = 0 , RDV?V?w + V2K = 0 . (4)

2w -1 -2
where Vv ( ),rr + r ( ),r + r( ),69
It is readily verified that the solution of the system (4) may be
expressed in terms of three functions ¢, ¢ and x in the form (4],

v = ¢+x, K = ¢ - RV} (5)
provided that
Vi = 0, V' = 0, Vix+2A'x = 0 , (6)

where A\* = 1/R?BD.
We note for what follows as expressions for resultants and couples

in terms of ¢, ¢ and

(v%%) (v?x) 08
Ner = Vo T RD( T o T ) ’ €))
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2 Xr, X 00
M - -(l—\!)m,rr - DViy + (1-v)D = + 7 :
.H = (1-v)D¢ - vDV?y - (1-v)D (1}_.!_. + x 90)
06 ,IT X T —;1-— .
(’ o _Yro X0 X ro
Mo = (1-vp(—22- 2 ) + -vp (2 - _;.._) .

and we also note the denlgnntlon; of ¢ and ¢ as inextensional bending

and membrane (interior) solution contributions, respectively, and the

designation of y as e zone solution contribution, with the physical

(8)

9

(10)

(1)

(12)

(13)

significance of the latter designation depending, on an appropriate relation

between the length-parameter 1/\ and an appropriate linear dimension
of the shell.

The Boundary Value Problem. We start out with the observation that

the classical solution w = -Pxy/2(1-y)D for St. Venant twisting of a

flat rectangular plate as produced by an arrangement of concentrated

corner forces P, in conjunction with an assumption of no inplane stress,

that is, in conjunction with the stipulation K = 0, also satisfies the
differential equations (4) for shallow spherical shells. Furthermore,

this solution of (4) satisfies the same corner force conditions for

a spherical cap with otherwise free edges, in the event that the projec-

tion of these edges onto the base plane of the shell happens to be

rectangular.
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Having the above simple solution for transverse twisting of a
spherical cap, we ask for the way in which this solution is modified
by the presence of a circular hole of radius a, concentric with the
apex of the shell, given that a is small compared to the overall dimen-
sions of the cap. Evidently, the boundary conditions for the free

edge of this hole are of the from

- . - = - -1 -
r a; Nrr Nre Mrr Qr +r "re,e 0. (14)

As regards the boundary conditions along the outer edges of the
cap, we make the stipulation that for large r we will have a homogeneous
state of stress with cartesian couple and resultant components ny = -P/2,

'&x = '&y = 0, Qx - Q’ = "xx = Nyy = ny = 0. This is transformed, in
an elementary manmner, into four conditions of the form

. - 1 -1 - -
r + o ; Mrr 5 P sin 20 , Qr +r "rs,e Nn_ Nre = 0 . (15

Closed-Form Solution of the Boundary Value Problem. The form of the

boundary conditions (14) and (15), in conjunction with the form of the
differential equations (4) indicates that suitable expressions for w and
K will be product solutions f(r) sin26. Considering that w and K must
be as in (5) and (6), and deleting at the outset terms not compatible
with the prescribed boundary conditions at infinity, we have then that
w and K will be of the form

2 2 = :

v o . _m_b__l’a 3_1\:‘ 20 (%. T tec, I3 +ckerar+ c.kei,ll’) ' (16)
2 2

K = 3Pa’sin20 (c2 rLz - ¢ kei ir +c,ker2/‘\r) ‘ (17

(1-v) /DB

with four arbitrary constants Chr and with the Kelvin functions ker, and
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kei, subject to the two ordinary second order differential equations
ker}x + x"'ker;x - 4x~’ker,x = ~-kei x , (18a)
keijyx + x"kei;x - 4x"?kei ,x = ker,x . (18b)

In deriving expressions for stress resultants and couples from k16)

and (17), it will be convenient to introduce the abbreviations
ker, = k_, kei, = k1 AR = oy . AR = W, (19)

Therewith, and with (18a,b), we obtain from equations (1) and (3)

[ (k; 4k k! Ak
R« APasindM) o & rioF S A
rr (1-v) /DB 6C2 1 u Lc’ X =7 A C~ (20)
P cos 26 g - ky k ky
No = %I:;;i%i_ -6c, 5% - u?  2¢ ( 4 ;;) - 2c, 35 - ;g ]‘ (21)
M - Psi.r:’Ze.} [eky - c k] - (1- v)(1-6c,g—;
k

N

k' 4k i 4k1
+ oyt s (T = F‘) * ey (T x? ) ’ o

q + I8 - -""“2“' uire,k; - c.k;l!
k' k k;
P sin 26 y
- -——-——-srn ‘1 - GC‘ ':"r.‘ + 2u2‘0,( 'x‘t' 5 ;‘II") + cn(—i’; -X—% ]{ b

Introduction of (20) to (23) into the boundary conditions (14)
then leads to the following set of four simultaneous equations for the

determination of the four constants of integration Chr

¢ (ukj - 4k;) - e (uky - 4k) = -6c, , (24)

r
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cy(uki - kg) - c (ukp - k) = -3e, , - ' (25)

T
uiky ; u’kr
e, ('I:1T + uk; - ri) -0, (‘I:TT - uki + hki) = 6cl b (AR (26)
uky (u’k; y
c, (T-_v— + louk; - Iokr) - et - lmki + l&ki) = 12¢, - 2 3 (27)

where now ki = ki(")’ etc.
Upon suitable transformations, this system of equations can be

written in a somewhat simpler form. To begin with, equations (24) and

(25) are readily shown to be equivalent to the set’
e, ek -ek = 0, A24°)
e« + c’uki - c.uk; = 0 . (25')

Having (24') and (25'), we may use (26) and (27) so as to obtain
in place of these two equations the set

2

-2¢, - g5 ¢, + cyukl +c ki = -1 (26')
2 "

¢, -, tek tek = -1 (21

Before gggluating the system (24') to (27'), it is useful to establish
the analytical form of the quantities which are of principal physical
interest. These quantities are the edge values of the couple Mee and
of the resultant Nee. We obtain a particularly convenient form of these

expressions by making use of equations (1) and (2), in conjunction with

’ Corresponding to the fact that the conditions Nyy = Nyg = 0 for r = a
can be shown to be equivalent to conditions K = Key=0




two of the boundary conditions in (14), so as to have

"ee(a-e) = -(14v)DV2w(a,®) , Nee(a,e) = V?K(a,9) (28)

An introduction of (16) and (17) into (28) gives, with the help of (18a,b),

Mgp(a.0) = -5 P uZ(c,k, - e,k sin20 (29a)
P u?

N,,(a,8) = - —t  (c.k_ + ck,;)s8in20 . (29b)

00 Lo Lt ot

Having (29a,b) we see, with the help of (24') and (27'), the possibility

of the further relations

"eo(" %) - -TERve . o
» P u? 1 1 u?
Nee (8, K) = -2- (m (i + C' - *2 m Cz) ’ (30‘))

and it remains only to determine the coefficients c, and c, from equa-
tions (24') to (27'). We do this by first expressing c,6 and c, in terms
of c,, from (24') and (25'), in the form

c, vk, + 2k, c, vky + 2k .
© TS WERTEHE STV EECRE o

and by then using (26') and (27') in order to obtain the relatioms

' 2 ] -
("kt + Zkt) + (uki + 2ki)2 v

1-v
¢, = |1+ 0w ey : (32a)
k_(uk! + 2k.) + k, (uk! + 2k;)
1 . SR LS A - 3 - Vhagdy i
Bl St 8 WKJk, — K7k, c, (32b)

1t is possible to simplify the form of (32a,b) somewhat by making

use of certain identities involving Kelvin functions of various orders.

i i




In this way we obtain+, upon introducting (32a,b) into (30a,b), as
expressions for the significant edge moment and the significant edge

resultant, in terms of zeroth order Kelvin functions,

M a,n/4)

oo ¢ 4 1+ v (33a)
T SREFE T’1—TY?VYYT .
where
£ g i, (ker' p)? + (kei'n)? (33b)
1 2u kei'n kery - ker'n keiwpy - 2u-T[(ker' n)? + (kei'un)?)
and
N_..(a,n/4) f
i ¢ - ot — I+, (34a)
/DB NIE
where
£ kei'y keipy + ker'py keryp
2 - kei'yu kerpy - ker' n keip - 2p-T[(ker" W) ? + (kei' )7} (34b)

Stress concentration factors for bending stresses and membrane

stresses. We define a bending stress concentration factor kb as the
ratio Mae(a,WIh)/Mo where Mo = Mee(m,W/h) = -P/2. Therewith Eh*lg

directly given by the right-hand side in (33a).

In order to obtain the corresponding membrane stress concentration
factor km' it is necessary to be more specific about the nature of the
two-dimensionally isotropic shell medium. We shall assume in what
follows that the shell is homogeneous in thickness direction and have

then the relation

DE = ool 1 . h’ (35a)
127{1-v?) ER 127{T-v?) ’

' See equations (9.9.14) to (9.9.17) in [1).
-9-




We write further

Nee(avw/a) 6“ 3P

bl woemba ML, R - el gl o L300

m -y2
Kk, = B o= 2 T+ - (35¢)

Stress concentration factors for small and for large values of yu.

Given that y = ra = a/VR'BD = VIZ(I-v?)a//Rh, the limiting case of a

flat plate corresponds to the assumption p = 0. We find, from equations
(33b) and (34b), that £ (0) = -1/4 and £,(0) = 0 and therewith from
(33a) and (35¢),

() = S5, k) =0 , (36a,b)
p=0 u=0
with this result coinciding, as it should, with Goodier's result
for plates, without consideration of transverse shear deformation (2].
For the case of large u, corresponding to a shell problem with
distinct interior and edge zone solution contributions use may be made
of appropriate asymototic formulas. We find, by making use of certain

known cross-product expansion formulas’ that

5 3/2 .
1 ~ = ﬁ ’ f} - 1 - '2"'"—"' ... (37apb)

and therewith,

t Equations (9.10.32) to (9.10.34) in [1].

-10-
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1-v [-V? 24v
k = (14v) (1 + ———) , k = i 1 --—-) (38a,b)
b w/Z » ‘l uvZ

except for terms of relative order 1/u’.
Inasmuch as bending and membrane stresses superimpose the relevant
stress concentration factor for the most highly stressed face of the

shell comes out to be, for sufficiently large values of u,

- 5 ‘,[—v’ /1-v2 {24y q——ﬁ)
k kb+km~ 1 +v + 3 - u,&'(fj_ -V s (39)

It may be noted that the numerical values of k for v = 0 and for

u =« are not greatly different, but that while for u = 0 the stress
concentration is due entirely to bending, a significant fraction of it

is, for 1 << y, due to membrane rather than due to bending action.

Numerical values for'fl, f kb and km. as a function of p and

2.
v, may be found in Table 1.

Interior solution stresses for large p. The form of the expressions

(16) and (17) for w and k indicates that for large values of » the
effect of the terms with ¢, and ¢, is significant in a narrow edge zone
only and that outside this zone the remaihing expression for w is as if
bending occurred without stretching and the remaining expression for K
is as if the state of stress of the shell was a pure membrane state.

We obtain information on the state of stress outside the narrow
edge zone, and in particular on the relative significance of bending
and membrane stresses, by determining the values of Meé and Ny, in
accordance with (16), (17) and the defining relations (1) and (2), by
setting ¢, = ¢, = 0 in (16) and (17) and by then deriving the relations

) Y & . F (i) . Rl
Mﬁﬂ a, E) 5 (1 + 6Cl) ’ NOO (a, K) V] H__\Sﬁ s (AOJ,b).
=} )=

- - - e o o TR MR




We evaluate (40a) by taking c, from equation (26), with c, and

c, as in (31) and (32a). Therewith we obtain, except for terms small

of higher order

1) D s
!gf— - :o * &1 o E (AL

A corresponding evaluation of (40b) leads to the relatiomns

(1) (1)

hN (]

e R O3 IR @
o o

A comparison of (4la,b) with (38a,b) shows that the order of
magnitude of the bending stress in the interior is the same as the
order of magnitude of this stress in the edge zone, in such a way that
the dimensionless edge zone value l+v decreases to a value 1 tn the
interior. At the same time the interior membrane stress comes out
to be small of relative order 1/u? so that, effectively, the interior
state of the shell is a state of inextensional bending.

Direct Asymptotic Solution for Interior and Edge Zone States.

We proceed as in [4] to solve the given boundary value problem, for
values of p which are sufficiently large compared to unity, through
use of equations (5) to (13). Introduction of (7) and (13) into the
two sets of boundary conditions (14) and (15) then leaves as conditions
for the determination of the two harmonic functions ¢ and y and of the

"plate on an elastic foundation" function y, for r = a,

(?x) (y)

t,rr R ( T i r?

v v (Viy) (vix)
N L E I L EN

-]12-




X X
(1-v)¢ = + Vi + (1-v) (-l’,s + —-153-9) = 0 (44)
1-v ¢,r0 0,9 1-v x,re X o o
r ( T X )9 5 r (r T 9 + (V2X).r o, K5

with equations (42), (43) and (45) also holding for r = », and with the
right-hand side of (44) being replaced by -(P/2D) sin26 for r = =,
We now note that when 1 << y we have the order of magnitude

relations,

5 N - cotey 3, (46)

= ola
X (ax, & ,XT

r
etc. We use these for an asymptotic solution of the problem, by retaining
in (44) and (45) the highest and second highest order of magnitude terms

in x, (V’x)'r and Y’y only, that is, we replace equations (44)

and (45) by the abbreviated equations

g5 ¢
(1"’)’,1:*72" - 0, u(_:_‘_'- ;‘,.)

2 -
T - + (v x) o _ S (47 ,48)

,00

An introduction of this into (42) and (43) then leaves as two conditions

for the determination of the two harmonic functions ¢ and 0,*

1-\’ 0.1’ 2 =
Vrr - RD 7 (T 8 r?) Pt 00 L. -
¥ ¥ -wif®
;re = ff S i;) ('%5 2 g%) e ‘,rrl 0 Tt i o

*Note that upon writing equations (7) to (13) in the form Nr = N: + N:,

etc., so as to distinguish between interior and edge zone solution contri-
butions, equations (49) and (50) are equivalent to the previocusly derived
contracted boundary conditions for the determination of the interior state

Paee | i i . | i i s
[4), of the form r Ser = R(Mrn + Mrr.n).ﬂ N - R(Mr6,= - "rr).ﬁ 0..

-13-




Having determined ¢ and ¢, we subsequently determine the associated

approximation for the edge zone function y with the help of equations
(&8)*, and we use the results obtained in this way in order to obtain
from equations (8) and (12) as approximate expressions for the relevant

edge values of circumferential stress resultant and stress couple

N + RDA Yy , HGO = -(1-\))1)0'rr - vDV2y = (51)

80 - V,rr

for r = a.
In order to carry out the remaining siﬁple calculations we write,
consistent with (16) and (17), in order to assure satisfaction of all

conditions at infinity

2 2 2
¢ - o - Bl '_i\,“2°(11,§.,+c, g,-) , (52).
i Pa’ sin 26 a?
v = K = ——— <" (¢ s (53)
2(1-v) /DB ( 2 ?r)
and we further write
-A(r-a)//7 ( r-a r-a
= e C,cos8 »— + C_ sin \—= g (54)
X 3 /2» ) /2
and
Vi = r2e7 (r-2)/ /2 C, sin LSS C, cos AEZQ) " (55)
vZ %3

We now introduce (52) and (53) into the boundary conditions (49)

and (50) and obtain as two equations for the determination of c, and c,

cpu? - (1-v)(146c,) = 0 , c,u? - (1-v)(1-6c,) = 0 . (56)

LJ
* We note that these equations may be written, equivalently, as
2 - 1 2 - °|1 > =
DV?y "rr and D(V X).r r Mm.ﬁ 0, for r a.

-14-




Equations (56) imply, consistent with (32), that

A TN W e, = 0 ; (57)

c!" 1
Having ¢, and ¢, as in (57), we finally obtain C, and C, from

(48) in the form

C, = <~P/2DA2 , €, = -C, -P/IfA*a ~ -G, |, (58)

3 L)

and therewith, from (51),
n P n P 59)
N..la, = - — a, = -(1+v) . (
sola. 7) L 7
The above expressions for the edge values of Nee and Mee may be compared
with the interior values of these same two quantities, N:e(a,nIA)
- 6P/2/DBu? and Ml (a,n/4) = -P/2, which follow from (52),(53) and (57),

consistent with the contents of eguation (41).

Table 1

ky km
u Es . v=0 {v=1/3 {v=1/2 v=0 |v=1/3 | v=1/2
0 -0.250 |0 1.333]1.600] 1.714 | O 0 0
.1]-0.249 {0.012 | 1.332}1.599] 1.713 {0.009| 0.008 | 0.007
.31-0.243 |0.063 | 1.321 | 1.591] 1.707 [0.048 | 0.041 | 0.036
.5]1-0.234 ]0.122 | 1.305] 1.580] 1.699 [|0.092| 0.078 | 0.069
.81-0.219 10.206 | 1.280} 1.561} 1.684 |0.152} 0.131 |} 0.116
1 [-0.208 j0.257 | 1.263| 1.548]| 1.674 |0.187 | 0.162 | 0.143
2 -0.165 |0.443 | 1.198 | 1.498] 1.635 {0.306]| 0.271 | 0.241
3 |{-0.135 [0.557 | 1.56 } 1.465] 1.609 j0.372} 0.333 | 0.299
4 |-0.114 j0.633 | 1.128 | 1.443| 1.591 |0.413] 0.373 | 0.336
5 1-0.098 {0.687 | 1.109| 1.427 ] 1.578 |0.440)] 0.400 | 0.362
® 0 1.000 1.000({ 1.333] 1.500 |0.577 | 0.544 0.500
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